Introduction to Channel
Access Clients

Kenneth Evans, Jr.
September 16, 2004

Part of the EPICS “Getting Started” Lecture Series

Argonne National Laboratory

| 7 A U.S. Department of Energy
~d Office of Science Laboratory

i, <= Operated by The University of Chicago

Outline

¢ Channel Access Concepts

* Channel Access API

* Simple CA Client

* Simple CA Client with Callbacks
¢ EPICS Build System

Channel Access Reference Manual

* The place to go for more information
* Found in the EPICS web pages
- Look under Documents
- Also under Base, then a specific version of Base

EPICS Overview

[MEDM | [MEDM [client || client || client |[MEDM |

| Meter | | Power Supply | |Camera|

Search and Connect Procedure

[MEDM | [MEDM || client || client | [client |[MEDM]|

~
// \ ~ 3. TCP Connection
\

N et
/ \ ‘Let\s\talk !
/ 2. UDQ Reply ~ 1 UDPBroadcast Sequence
/ \ ~ .
/ I have\t ! ~ Whohasit?
/ \ ~o
L4 h |
[check | [check | Check
| Meterl | Power Supply | |Camera|

Search Request

* A search request consists of a sequence of UDP packets
- Only goes to EPICS_CA_ADDR_LIST
- Starts with a small interval (30 ms), that doubles each time
- Until it gets larger than 5 s, then it stays at 5 s
- Stops after 100 packets or when it gets a response

- Never tries again until it sees a beacon anomaly or creates a
new PV

- Total time is about 8 minutes to do all 100

* Servers have to do an Exist Test for each packet
° Usually connects on the first packet or the first few
* Non-existent PVs cause a lot of traffic

- Try to eliminate them

Beacons

* A Beacon is a UDP broadcast packet sent by a Server

* When it is healthy, each Server broadcasts a UDP beacon at
regular intervals (like a heartbeat)

- EPICS_CA_BEACON_PERIOD, 15 s by default

* When it is coming up, each Server broadcasts a startup
sequence of UDP beacons

- Starts with a small interval (25 ms, 75 ms for VxWorks)
- Interval doubles each time
- Until it gets larger than 15 s, then it stays at 15 s
- Takes about 10 beacons and 40 s to get to steady state

¢ Clients monitor the beacons
- Determine connection status, whether to reissue searches

Virtual Circuit Disconnect

* 3.13 and early 3.14
- Hang-up message or no response from server for 30 sec.
- If not a hang-up, then client sends “Are you there” query
- If no response for 5 sec, TCP connection is closed
- MEDM screens go white
- Clients reissue search requests
* 3.145and later
- Hang-up message from server
- TCP connection is closed
- MEDM screens go white
- Clients reissue search requests

Virtual Circuit Unresponsive

* 3.14.5 and later

- No response from server for 30 sec.

- Client then sends “Are you there” query

- If no response for 5 sec, TCP connection is not closed
- For several hours, at least

- MEDM screens go white

- Clients do not reissue search requests
- Helps with network storms

- Clients that do not call ca_poll frequently get a virtual circuit
disconnect even though the server may be OK

- Clients written for 3.13 but using 3.14 may have a problem
- May be changed in future versions

Important Environment Variables

* EPICS_CA_ADDR_LIST
- Determines where to search
- Is alist (separated by spaces)
- “123.45.1.255 123.45.2.14 123.45.2.108"
- Default is broadcast addresses of all interfaces on the host
- Works when servers are on same subnet as Clients
- Broadcast address
- Goes to all servers on a subnet
- Example: 123.45.1.255
- Use ifconfig —a on UNIX to find it (or ask an administrator)
* EPICS_CA_AUTO_ADDR_LIST
- YES: Include default addresses above in searches
- NO: Do not search on default addresses
- If you set EPICS_CA_ADDR_LIST, usually set this to NO

10

Ploneering Stice of Science
A o V'S Depariment
k Technolo of Energ

A

EPICS_CA_ADDR_LIST

[MeEDM | [MEDM [client || client || client |[MEDM|

Broadcast ; \ \\\ Specific
123.45.1.255 / \ \\\123.45.2.108
/ \ ~
/ \ S
Subnet1 / \ N Subnet 2
|, GEEEEEEE \'““I N melded S A
| |4 h | , 1Not Included N |
' |server | [1oc |1t [oc] [Lioc] !
L ____I | A R I
| Meter| | Power Supply | |Camera|

Other Environment Variables

* CA Client * CA Server
EPICS_CA_ADDR_LIST EPICS_CAS_SERVER_PORT
EPICS_CA_AUTO_ADDR_LIST EPICS_CAS_AUTO_BEACON_ADDR_LIST
EPICS_CA_CONN_TMO EPICS_CAS_BEACON_ADDR_LIST
EPICS_CA_BEACON_PERIOD EPICS_CAS_BEACON_PERIOD
EPICS_CA_REPEATER_PORT EPICS_CAS_BEACON_PORT
EPICS_CA_SERVER_PORT EPICS_CAS_INTF_ADDR_LIST
EPICS_CA_MAX_ARRAY_BYTES EPICS_CAS_IGNORE_ADDR_LIST
EPICS_TS_MIN_WEST

* Seethe Channel Access Reference Manual for more
information

3.13 and 3.14 Similarities

* Much effort has done into making clients written for 3.13 work
with 3.14 with no changes to the coding

* Even large programs like MEDM have had to make only a few
minor changes

* This means existing programs typically do not need to be
rewritten

- This is good!
* In contrast, Channel Access Servers require many changes in
converting to 3.14

3.13 and 3.14 Differences

* 3.14is threaded
- Your program does not have to be threaded
* 3.14 has different names for some functions
- ca_context_create for ca_task_initialize
- ca_context_destroy for ca_task_exit
- ca_create_channel for ca_search_and_connect
- ca_create_subscription for ca_add_event
- ca_clear_subscription for ca_clear_event

- The new functions may have more capabilities, usually related
to threading

- We will use the new names

* 3.14 has a different mechanism for lost connections
- Virtual circuit unresponsive (Not available in 3.13)
- Virtual circuit disconnected

14

>
A
\

Basic Procedure for a Channel Access Client

* |Initialize Channel Access
- ca_task_initialize or ca_context_create
* Search
- ca_search_and_connect or ca_create_channel
* Do get or put
- ca_getor ca_put
* Monitor
- ca_add_event or ca_create_subscription
* Give Channel Access a chance to work
- ca_poll, ca_pend_io, ca_pend_event
* Clear achannel
- ca_clear_channel
¢ Close Channel Access
- ca_task_exit or ca_context_destroy

cadef.h

* All C or C++ programs must include cadef.h
- #include <cadef.h>

* You can look at this file to get more insight into Channel
Access

* This presentation will use C examples
- We will try to emphasize concepts, not the language

- Even if you do not use C, it is important to understand what is
going on behind what you do use

ca_context_create

ca_context_destroy

enum ca_preemptive_callback_select {
ca_disable_preemptive_callback,
ca_enable_preemptive_callback };

int ca_context_create (
enum ca_preemptive_callback_select SELECT);

* Should be called once prior to any other calls
* Sets up Channel Access
¢ Use SELECT=ca_disable_preemptive_callback
- Unless you intend to do threads
* Can also use ca_task_initialize() for 3.13 compatibility

void ca_context_destroy ();

* Should be called before exiting your program
* Shuts down Channel Access
* Can also use ca_task_exit() for 3.13 compatibility

ca_create_channel

typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

* Sets up achannel and starts the search process
* PVNAME is the name of the process variable
° CALLBACK is the name of your connection callback (or NULL)

- The callback will be called whenever the connection state
changes, including when first connected

- Information about the channel is contained in ARGS
- Use NULL if you don't need a callback

ca_create_channel, cont’d

typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

* PUSERis away to pass additional information
- Whatever you have stored at this address
- Itis stored in the chid
- In C++ it is often the this pointer for a class
- Use NULL if you don't need it
* Use PRIORITY=CA_PRIORITY_DEFAULT

ca_create_channel, cont’d

ca_create_channel, cont'd

typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

* A chidis apointer to (address of) an opaque struct used by
Channel Access to store much of the channel information
- chanld is the same as chid (typedef chid chanld;)
° PCHID is the address of the chid pointer (Use &CHID)
- You need to allocate space for the chid before making the call
- Channel Access will allocate space for the struct and return
the address

Jg& 3\ﬁf e

typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,

caCh *CALLBACK,

void *PUSER,

capri PRIORITY,

chid *PCHID);

* Use macros to access the information in the chid

- ca_name(CHID) gives the process variable name

- ca_state(CHID) gives the connection state

- ca_puser(CHID) gives the PUSER you specified

- Etc.
* The ARGS struct in the connection callback includes the chid
* Can also use ca_search_and connect() for 3.13 compatibility

22

ca_clear_channel

int ca_clear_channel (chid CHID);

* Shuts down a channel and reclaims resources
* Should be called before exiting the program
° CHIDis the same chid used in ca_create_channel

Ca array_g et
int ca_array_get (
chtype TYPE,
unsigned long COUNT,
chid CHID,
void *PVALUE);
* Requests a scalar or array value from a process variable
* Typically followed by ca_pend_io
* TYPE is the external type of your variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING
° COUNT is the number of array elements to read
* CHIDis the channel identifier from ca_create_channel
° PVALUE is where you want the value(s) to go
- There must be enough space to hold the values 2
A >

ca_array_get_callback

typedef void (*pCallBack) (struct event_handler_args
ARGS);
int ca_array_get_callback (
chtype TYPE,
unsigned long COUNT,
chid CHID,
pCallBack USERFUNC,
void *USERARG);

* Requests a scalar or array value from a process variable, using
a callback
* TYPE is the external type of your variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING
° COUNT is the number of array elements to read

ca_array_get_callback, cont’d

typedef void (*pCallBack) (struct event_handler_args
ARGS) ;
int ca_array_get_callback (
chtype TYPE,
unsigned long COUNT,
chid CHID,
pCallBack USERFUNC,
void *USERARG);

° CHIDis the channel identifier from ca_create_channel
* USERFUNC is the name of your callback to be run when the
operation completes
° USERARG is away to pass additional information to the callback
- struct event_handler_args has a void *usr member

ca_array put

int ca_array_put (
chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE);

* Requests writing a scalar or array value to a process variable
* Typically followed by ca_pend_io
° TYPEis the external type of your supplied variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING
° COUNT is the number of array elements to write
° CHID s the channel identifier from ca_create_channel
° PVALUE is where the value(s) to be written are found

ca_array_put_callback

typedef void (*pCallBack) (struct event_handler_args
ARGS);
int ca_array_put_callback (
chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCalIBack USERFUNC,
void *USERARG);

* Requests writing a scalar or array value to a process variable,
using a callback
* TYPE is the external type of your variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

ca_array_ put_callback, cont’'d

typedef void (*pCallBack) (struct event_handler_args
ARGS);
int ca_array_put_callback (
chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCallBack USERFUNC,
void *USERARG);

° COUNT is the number of array elements to write
° CHIDis the channel identifier from ca_create_channel
* PVALUE is where the value(s) to be written are found

Pioneerin offi
A Science an UsS. De
) Technolog ¢

ca_array_put_callback, cont’d

typedef void (*pCallBack) (struct event_handler_args
ARGS) ;
int ca_array_put_callback (
chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCallBack USERFUNC,
void *USERARG);

* USERFUNC is the name of your callback to be run when the
operation completes
* USERARG is a way to pass additional information to the callback
- struct event_handler_args has a void *usr member

ca_create_subscription

typedef void (*pCallBack) (struct event_handler_args
ARGS);
int ca_create_subscription (
chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

* Specify a callback function to be invoked whenever the
process variable undergoes significant state changes

- Value, Alarm status, Alarm severity
- This is the way to monitor a process variable

ca_create_subscription, cont’'d

typedef void (*pCallBack) (struct event_handler_args
ARGS);
int ca_create_subscription (
chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCalIBack USERFUNC,
void *USERARG,
evid *PEVID);

* TYPE is the external type you want returned
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING
* COUNT is the number of array elements to monitor

ca_create_subscription, cont’d

typedef void (*pCallBack) (struct event_handler_args
ARGS);

int ca_create_subscription (
chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

° CHID s the channel identifier from ca_create_channel
° MASK has bits set for each of the event trigger types requested

- DBE_VALUE Value changes
- DBE_LOG Exceeds archival deadband
- DBE_ALARM Alarm state changes

Pioneerin offi
A Science an UsS. De
) Technolog ¢

ca_create_subscription, cont’d

typedef void (*pCallBack) (struct event_handler_args
ARGS) ;

int ca_create_subscription (
chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

* USERFUNC is the name of your callback to be run when the state
change occurs
* USERARG is a way to pass additional information to the callback
- struct event_handler_args has a void *usr member

A Soncea

34

‘H\ﬂfl‘

ca_create_subscription, cont’d

typedef void (*pCallBack) (struct event_handler_args
ARGS);

int ca_create_subscription (
chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

° PEVIDIis the address of an evid (event id)
- You need to allocate space for the evid before making the call
- Similar to a chid
- Only used to clear the subscription (Can be NULL if not needed)

ca_clear_subscription

int ca_clear_subscription (evid EVID);

* Used to remove a monitor callback
* EVIDis the evid from ca_create_subscription

ca_add_exception_event

typedef void (*pCallback) (struct exception_handler_args
ARGS);
int ca_add_exception_event (
pCallback USERFUNC,
void *USERARG);

* Used to replace the default exception handler
° USERFUNC is the name of your callback to be run when an
exception occurs
- Use NULL to remove the callback
° USERARG is a way to pass additional information to the callback
- struct exception_handler_args has a void *usr member

Request Handling

° The preceding routines are requests
- They only queue the operation
- They hardly ever fail
- The return values are almost always ECA_NORMAL
- (But they should be checked)

* These requests are only processed when one of the following
is called

- ca_pend_io Blocks until requests are processed
- ca_pend_event Blocks a specified time
- ca_poll Processes current work only

* If these routines are not called, the requests are not processed
and background tasks are also not processed

* Theruleis that one of these should be called every 100 ms
- To allow processing of background tasks (beacons, etc.)

A T

38

A

ca pend_io
int ca_pend_io (double TIMEOUT);

* Flushes the send buffer
* Blocks for up to TIMEOUT seconds until
- Outstanding gets complete
- Searches with no callback have connected
* Returns ECA_NORMAL when gets and searches are complete
* Returns ECA_TIMEOUT otherwise
- Means something went wrong
- Get requests can be reissued
- Search requests can be reissued after ca_clear_channel
* Channel Access background tasks are performed
- Unless there were no outstanding I/O requests
¢ Use with searches, gets, and puts that don’t use callbacks

ca_pend_event

int ca_pend_event (double TIMEOUT);

* Flushes the send buffer
* Process background tasks for TIMEOUT seconds
- Does not return until TIMEOUT seconds have elapsed

* Use this when your application doesn’t have to do anything
else

* Use ca_pend_event instead of sleep

10

ca_poll

CHID Macros

int ca_poll ;

* Flushes the send buffer
* Process outstanding tasks only
- Exits when there are no more outstanding tasks
- Otherwise similar to ca_pend_event
¢ Use this when your application has other things to do
- E.g. most GUI programs
* Besureitis called at least every 100 ms

chtype ca_field_type (CHID);

unsigned ca_element_count (CHID);

char *ca_name (CHID);

void *ca_puser (CHID);

void ca_set_puser (chid CHID, void *PUSER);

enum channel_state ca_state (CHID);

enum channel_state {

cs_never_conn, Valid chid, server not found or unavailable
cs_prev_conn, Valid chid, previously connected to server
cs_conn, Valid chid, connected to server
cs_closed }; Channel deleted by user

char *ca_host_name (CHID);

int ca_read_access (CHID);

int ca_write_access (CHID);

ca_connection_handler_args

struct ca_connection_handler_args {
chanld chid; Channel id
long op; CA_OP_CONN_UP or
CA_OP_CONN_DOWN
};

¢ Used in connection callback
* Note chanld is used rather than chid
- Some compilers don't like chid chid;

event_handler_args

typedef struct event_handler_args {

void *usr; User argument supplied with request
chanld chid; Channel ID
long type; The type of the item returned
long count; The element count of the item returned
const void *dbr; A pointer to the item returned
int status; ECA_xxx status of the requested op

} evargs;

* Used in get, put, and monitor callbacks
* Do not use the value in dbr if status is not ECA_NORMAL

11

Channel Access API Functions

ca_add_exception_event ca_get
ca_attach_context ca_host_name
ca_clear_channel ca_message

ca_clear_subscription ca_namde

ca_client_status ca_read_access A
ca_replace_access_rights_event

ca_context_create

ca_replace_printf_handler
ca_context_destroy

ca_pend_event
ca_context_status

ca_pend_io
ca_create_channel ca_poll
ca_create_subscription ca_puser
ca_current_context ca_put
ca_dump_dbr() ca_set_puser
ca_element_count ca_signal
ca_field_type ca_sg_block
ca flush_io ca_sg_create
Deprecated
ca_add_event ca_search

ca_clear_event ca_search_and_connect

ca_sg_delete
ca_sg_get
ca_sg_put
ca_sg_reset
ca_sg_test
ca_state
ca_test_event
ca_test_io
ca_write_access
channel_state
dbr_size[]
dbr_size_n
dbr_value_size[]
dbr_type_to_text
SEVCHK

ca_task_exit
ca_task_initialize

A =5

Simple CA Client

* Defines and includes

/* Simple CA client */

#define TIMEOUT 1.0
#define SCA_OK 1
#define SCA_ERR 0O
#define MAX_STRING 40

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cadef.h>

46

A e 1%

Simple CA Client

* Function prototypes and global variables

/* Function prototypes */

int main(int argc, char **argv);
static int parseCommand(int argc, char
static void usage(void);

/* Global variables */
int pvSpecified=0;

char name[MAX_STRING];
char value[MAX_STRING];
double timeout=TIMEOUT;

**argv);

Simple CA Client

* Parsethe command line

int main(int argc, char **argv)
{

int stat;

chid pCh;

/* Parse the command line */
if(parseCommand(argc,argv) != SCA_OK) exit(l);
iT(1pvSpecified) {

printf(""No PV specified\n™);
exit(l);

48

T 170

12

Simple CA Client

¢ Initialize Channel Access

/* Initialize */
stat=ca_context_create(ca_disable_preemptive_callback);

if(stat = ECA_NORMAL) {
printf(*'ca_context_createfailed:\n%s\n",

ca_message(stat));
exit(l);

Simple CA Client

* Request the search

/* Search */
stat=ca_create_channel (name,NULL,NULL,
CA_PRIORITY_DEFAULT,&pCh);
if(stat !'= ECA_NORMAL) {
printf(*'ca_create_channel failed:\n%s\n",
ca_message(stat));
exit(l);

Simple CA Client

¢ Call ca-pend_io to process the search

/* Process search */
stat=ca_pend_io(timeout);
if(stat !'= ECA_NORMAL) {
printf(“search timed out after %g sec\n",
timeout);
exit(l);

Simple CA Client

* Request the get

/* Get the value */
stat=ca_array_get(DBR_STRING,1,pCh,&value);
if(stat !'= ECA_NORMAL) {

printf(‘'ca_array_get:\n%s\n",
ca_message(stat));
exit(l);

Simple CA Client

* Call ca-pend_io to process the get

/* Process get */
stat=ca_pend_io(timeout);
if(stat = ECA_NORMAL) {
printf(“get timed out after %g sec\n",
timeout);
exit(l);
}

printf("'The value of %s is %s\n",name,value)

Simple CA Client

* Clean up

/* Clear the channel */
stat=ca_clear_channel (pCh);
if(stat = ECA_NORMAL) {
printf(*'ca_clear_channel failed:\n%s\n",
ca_message(stat));

}

/* Exit */
ca_context_destroy();
return(0);

Simple CA Client

* Output

simplecaget evans:calc
The value of evans:calc is 6

Simple CA Client with Callbacks

* Defines and includes
/* Simple CA client with Callbacks */

#define TIMEOUT 1.0
#define SCA_OK 1
#define SCA_ERR O
#define MAX_STRING 40

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <string.h>
#include <cadef.h>

B

14

Simple CA Client with Callbacks

* Function prototypes

/* Function prototypes */

int main(int argc, char **argv);

static void connectionChangedCB(struct
connection_handler_args args);

static void valueChangedCB(struct event _handler_args
args);

static char *timeStamp(void);

static int parseCommand(int argc, char **argv);

static void usage(void);

>
A
\

Simple CA Client with Callbacks

* Global variables

/* Global variables */
int pvSpecified=0;

char name[MAX_STRING];
time_t curTime, startTime;
double timeout=TIMEOUT;

Simple CA Client with Callbacks

* Parse the command line

int main(int argc, char **argv)
{

int stat;

chid pCh;

/* Parse the command line */
if(parseCommand(argc,argv) != SCA_OK) exit(l);
iT(IpvSpecified) {

printf(*'No PV specified\n™);
exit(l);

Simple CA Client with Callbacks

* Initialize Channel Access

/* Initialize */
stat=ca_context_create(ca_disable_preemptive_callback);
if(stat = ECA_NORMAL) {

printf(*'ca_context_createfailed:\n%s\n",
ca_message(stat));
exit(l);

60

A

15

Simple CA Client with Callbacks

* Search

/* Search */
stat=ca_create_channel (name,connectionChangedCB,NULL,
CA_PRIORITY_DEFAULT,&pCh) ;
if(stat !'= ECA_NORMAL) {
printf('ca_create_channel failed:\n%s\n",
ca_message(stat));
exit(l);
¥
printf(""%s Search started for %s\n",timeStamp(),name);

Simple CA Client with Callbacks

* Wait in ca_pend_event for the callbacks to occur

/* Wait */
startTime=curTime;
ca_pend_event(timeout);
printf("%s ca_pend_event timed out after %g sec\n",
timeStamp(), timeout);

Simple CA Client with Callbacks

¢ Clean up

/* Clear the channel */
stat=ca_clear_channel (pCh);
if(stat !'= ECA_NORMAL) {
printf(*'ca_clear_channel failed:\n%s\n",
ca_message(stat));

}

/* Exit */
ca_context_destroy();
return(0);

Simple CA Client with Callbacks

* Connection callback implementation

static void connectionChangedCB(struct
connection_handler_args args)

{
chid pCh=args.chid;
int stat;

/* Branch depending on the state */
switch(ca_state(pCh)) {

Simple CA Client with Callbacks

* Connection callback implementation

case cs_conn:
printf("'%s Connection successful\n",timeStamp());
stat=ca_array_get_cal lback(DBR_STRING,1,pCh,
valueChangedCB,NULL) ;

if(stat 1= ECA_NORMAL) {

printf(*'ca_array_get_callback:\n%s\n",
ca_message(stat));

exit(l);

3

break;

Simple CA Client with Callbacks

* Connection callback implementation

case cs_never_conn:
printf("%s Cannot connect\n",timeStamp());
break;

case cs_prev_conn:
printf("%s Lost connection\n",timeStamp());
break;

case cs_closed:
printf("%s Connection closed\n",timeStamp());
break;

66

>
A
\

Simple CA Client with Callbacks

* Value changed callback implementation

static void valueChangedCB(struct event_handler_args args)
{
/* Print the value */
if(args.status == ECA_NORMAL && args.dbr) {
printf("%s Value is: %s\n",timeStamp(),
(char *)args.dbr);
printf("Elapsed time: %ld sec\n",
curTime-startTime);

Simple CA Client with Callbacks

* Output

simplecagetch evans:calc

Sep 14 18:31:55 Search started for evans:calc

Sep 14 18:31:55 Connection successful

Sep 14 18:31:55 Value is: 5

Elapsed time: O sec

Sep 14 18:31:56 ca_pend_event timed out after 1 sec

* Time for this operation is typically a few ms

17

Source files for Simple Get Clients

* Some of the code that is not related to Channel Access has not
been shown

* All the files necessary to build a project as an EPICS Extension
should be available with the presentation

- Makefile
- Makefile.Host
- simplecaget.c
- simplecagetch.c
- LICENSE
* Stored as simpleCA.tar.gz

EPICS Build System

* Supports both native and GNU compilers
* Builds multiple types of components
- libraries, executables, headers, scripts, java classes, ...
* Supports multiple host and target operating systems
* Builds for all hosts and targets in a single <top> tree
- epics/base
- epics/extensions
* Allows sharing of components across <top> trees
* Has different rules and syntax for 3.13 and 3.14

70

>
A
\

System Requirements

* Required software

- Perl version 5 or greater

- GNU make, version 3.78.1 or greater

- C++ compiler and linker (GNU or host vendor's compiler)
* Optional software

- Tornado Il and board support packages

- RTEMS development tools and libraries

- Motif, X11, JAVA, TK/TCL...

User Requirements

* Set an environment variable to specify the architecture
- EPICS_HOST_ARCH for 3.14
- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.
- HOST_ARCH for 3.13
- solaris, Linux, WIN32, etc.
* Set the PATH so the required components can be found
- Perl, GNU make, C and C++ compilers
- System commands (e.qg. cp, rm, mkdir)

18

Typical Extensions Build Tree

Getting Started with an Extension

epics/base <top> for base
epics/extensions <top> for extensions
config 3.13 configuration
configure 3.14 configuration
bin Binaries by architecture
solaris
solaris-sparc
lib Libraries by architecture
solaris
solaris-sparc
src Sources by application
simpleCA Application source files
O.solaris Binaries for this application

O.solaris-sparc

* Make a directory structure for base
- E.g. epics/base
* Obtain base and build it
- Set COMPAT_TOOLS_313 first if necessary (see later)
° Make a directory structure for extensions
- E.g. epics/extensions
* Get extensions/config and configure from the EPICS pages
* Set EPICS_BASE to your desired version of base
- In extensions/config/RELEASE for 3.13
- In extensions/configure/RELEASE for 3.14
* Type gnumake (or make) in extensions
* Get an extension and put it under extensions/src
* Type gnumake (or make) in your application directory

74

Ploneering Stice of Science
A o V'S Depariment
k Technolo of Energ

A

Using the 3.13 Build Rules for Extensions

* Most existing extensions are still set up for 3.13 builds
- There is a Makefile and a Makefile.Host
- Makefile.Host is most important and has 3.13 syntax
- Can still use a 3.14 base
* Set HOST_ARCH for your platform
- solaris, Linux, WIN32, etc.
* Set EPICS_HOST_ARCH for your platform
- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.
* Configuration is in extensions/config
- RELEASE (Specifies what base to use, can be 3.14)
- CONFIG_SITE_xxx (Specifies local changes for xxx arch)
* Before building a 3.14 base
- Modify base/configure/CONFIG_SITE
- COMPAT_TOOLS_313=YES

Using the 3.14 Build Rules for Extensions

* Go to the the EPICS page for your version of base

* Read the README
- Itis very extensive
- Should tell you everything you need to know
° Thereis aonly a Makefile and it uses 3.14 syntax
* Set EPICS_HOST_ARCH for your platform
- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.
° Configuration is in extensions/configure
- RELEASE (Specifies what base)
- 0S/CONFIG_SITE_xxx (Specifies local changes for xxx arch)

19

Makefile for Simple Get Clients

TOP = _./..
include $(TOP)/config/CONFIG_EXTENSIONS
include $(TOP)/config/RULES_ARCHS

Makefile.Host for Simple Get Clients

TOP = ../. /..
include $(TOP)/config/CONFIG_EXTENSIONS

HOST_OPT = NO
CMPLR = STRICT

PROD = simplecaget simplecagetcb
PROD_LIBS = ca Com
ca DIR = $(EPICS_BASE_LIB)

Com DIR = $(EPICS_BASE_LIB)

simplecaget_SRCS += simplecaget.c
simplecagetch_SRCS += simplecagetcb.c

include $(TOP)/config/RULES.Host

Acknowledgements

* Jeff Hill [LANL] is responsible for EPICS Channel Access and
has developed almost all of it himself

* Janet Anderson [ANL] is responsible for and has developed
most of the EPICS Build System

A
Thank You
This has been an
APS Controls Presentation
A “1,‘\,‘ a

20

Thank You

This has been an
APS Controls Presentation

N

21

